Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 11(1): 6176, 2020 12 02.
Article in English | MEDLINE | ID: covidwho-957574

ABSTRACT

Rapid screening and low-cost diagnosis play a crucial role in choosing the correct course of intervention when dealing with highly infectious pathogens. This is especially important if the disease-causing agent has no effective treatment, such as the novel coronavirus SARS-CoV-2, and shows no or similar symptoms to other common infections. Here, we report a disposable silicon-based integrated Point-of-Need transducer (TriSilix) for real-time quantitative detection of pathogen-specific sequences of nucleic acids. TriSilix can be produced at wafer-scale in a standard laboratory (37 chips of 10 × 10 × 0.65 mm in size can be produced in 7 h, costing ~0.35 USD per device). We are able to quantitatively detect a 563 bp fragment of genomic DNA of Mycobacterium avium subspecies paratuberculosis through real-time PCR with a limit-of-detection of 20 fg, equivalent to a single bacterium, at the 35th cycle. Using TriSilix, we also detect the cDNA from SARS-CoV-2 (1 pg) with high specificity against SARS-CoV (2003).


Subject(s)
COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Animals , DNA, Bacterial/genetics , Humans , Mycobacterium avium subsp. paratuberculosis/genetics , Oligonucleotide Array Sequence Analysis/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL